导读:伴随着物联网的迅猛发展,以及 5G 时代的到来,边缘计算越来越得到广泛的重视与应用。本文从边缘计算的基本概念、边缘计算———物联网深度发展的解决方案、边缘计算——物联网深度发展的解决方案、边缘计算的广泛应用、边缘计算面临的挑战等多方面,论述了边缘计算在缩短数据的传输距离,消除带宽延迟问题,提升应用和性能的可靠性,降低运行成本的作用。
体工业的迅猛发展把算的广泛应用、边缘计算面临的挑战等多方面,论述了边缘计算在缩短数据的传输距离,消除带宽延迟问题,提升应用和服务的性能和可靠性,降低运行成本的作用。人们生活带到了智能时代,如:智能手环、智能手表、智能手机这样的随身玩物,更为整个工业世界带来了爆发式增长的、各类全新的传感器,世界半导体贸易统计组织( WSTS) 数据显示,上世纪九十年代初,半导体世界市场规模仅为约 500 亿美元,而 2018 年则增长至接近 10 倍的4779 亿美元。根据 IDC 预测,到 2020 年,全球将有 500 亿终端设备、2120 亿个传感器接入互联网,每天产生超过 44ZB 的数据大部分来自它们。海量的设备和庞大的数据量更组成了互联网的一个全新分支———物联网。
物联 5G 网络的出现,以及云基础设施上的负载越来越大,智能应用的数量剧增,推动了边缘计算的兴起。在物联网应用中,数据处理、分析和存储越来越多地发生在网络边缘侧,接近用户和设备需要访问信息的地方,边缘计算已成了一个重要的发展方向。物联网的快速发展推动了边缘计算的兴起。
边缘计算的概念
边缘计算是指在智能设备或数据源头的一端,提供网络、存储、计算、应用等能力,达到更快的网络服务响应,更安全的本地数据传输。边缘计算可以满足系统在实时业务、智能应用、安全隐私保护等方面的要求,为用户提供本地的智能服务。
边缘计算一般由云端系统、本地核心节点和普通设备组成,云端系统负责设备管理、配置设备驱动函数和联动函数、设置消息路由等功能,本地核心节点一般是计算能力较强的设备,如路由器和网关,提供本地计算、消息转发、设备管理的能力,设备一般如灯、开关等轻量级设备,可以接收网关下发的指令,和上报数据给网关。
通过缩短设备与提供给设备资源之间的距离,另外减少网络跳数,边缘计算消除了当今互联网在延迟和带宽方面的限制,从而带来全新的应用类别。就边缘计算而言,计算系统和存储系统也位于边缘,尽可能接近生成所处理的数据的部件、设备、应用或人。思科在 2014 年 1 月推出了其雾计算,以此将云计算功能引入到网络边缘。实际上,雾是标准,边缘是概念。雾实现了边缘计算概念中的可重复结构,那样企业就可以将计算推送到集中系统或云之外的地方,以获得更好的性能和可扩展性。
边缘计算-物联网深度决方案
基数庞大的传感器就像人的末梢神经,监业机体的每一台设备、每一个流程,并将数据源源不断汇集到数据中心里,让企业能够通过数据形成新的工业感知。这种全新的感知不仅能够极大地提高生产效率,更能催生出自动驾驶、智能城市等全新的工业应用场景。
2.1 边缘计算的形成
随着海量数据在数据心内的高速汇集,传统上数据中心为核心的 IT 总体架构却遇到了空前的挑战。各类终端和传感器必须通过网络将数据汇集到数据中心里,再通过网络将经过处理的数据反馈给终端,从而形成完整的感知和控制回路。
巨大的数据量让整个数据中心的南北向网络面临沉重担。在以带宽计费的网络世界中,带宽太小就无法满足工业对实时感知的现实需求,而足量的带宽却又意味着及其高昂的成本和种种网络技术的限制。显然,这种以数据中心为核心的传统 IT架构思路已经不能支撑物联网的深度发展。于是,边缘计算应运而生。
2.2 边缘计算的可靠性
对于制造业、医疗、公用事和市政等,物联网的发展未几年可能会得到快速的发展,无论是设备的数量还是数据量都会呈几何式增长。物联网设备产生的大量数据可能会导致延迟现象,而边缘计算解决方案可以帮助增强数据处理能力,缩短数据的传输距离,从而消除带宽和延迟问题,最终提升应用和服务的性能和可靠性,并降低运行成本,从而进一步帮助避免延迟。数据处理发生在距离数据来源最近的地方,这使得用户更容易实时的监测洞察到物联网设备的运行情况。
边缘计算的广泛应用
2018 年 9 月在无锡发布17-2018 年中国物发展年度报告》显示,2017 年,我国物联网市场已进入实质性发展阶段,全年市场规模突破 1 万亿元,预计 2021 年,我国物联网平台支出将位居全球第一。
蓬勃发展的物联网产业也给边缘计算带来了前所未有的新需求。以自动驾驶为例,由于自动驾驶汽车上遍布各种传感器,这些传感器每小时所采集到的数据量就有数十 TB,汽车正是基于对这些数据的实时分析来实现自动驾驶。问题来了,当汽车遭遇突发状况时,系统如何在第一时间毫不迟疑地做出反应呢? 依靠数据传输到云端处理,再下发指令的方式显然行不通。
并非只有自动驾驶这样的场景需要边缘计算,在医疗行业、制造行业、智能家居行似这样的应用场景同样大量存在。在这些场景里,边缘计算的应用可以让系统做出实时响应,从而避免网络中断或延迟所造成的负面影响。研究公司Grand View 表示,物联网设备产生的大量数据可能会导致延迟现象,而边缘计算解决方案可以帮助增强数据处理能力,从而进一步帮助避免延迟。数据处理发生在距离数据来源最近的地方,这使得用户更容易实时的监测洞察到物联网设备的运行情况。总之,物联网的快速发展是推动边缘计算兴起的最大因素之一。
总之,边缘计算的时代来了。边缘计算是一种解决方案,边缘计算也是云服务,是由原来据中心慢慢推向了部分用户侧的边缘计算与云计算的协和,它是由于用户的业务需求所决定的,边缘计算更准确的是一种 IT 和 CT 更融合的解决方案。
作者简介: 蒋志斌( 1967-) ,男,湖南永州人,齐齐哈尔大学图书馆,副研究馆从事图书情报研究。
参考文献:
施巍松,张星洲,王一帆,张庆阳.边缘计算: 现状与展望
林小新.云计算、缘计算和雾计算——了解每种计算的实际应用
刘启诚.边缘计算产业进入重要机遇期
李林哲,周佩雷,程鹏,史治国.边缘计算综述: 构架、挑战与应用