导读:本报告为科技部科技创新战略研究专项项目“高新技术领域年度重点创新进展报告”( 编号:ZLY201633) 研究成果之一。
本报告为科技部科技创新战略研究专项项目“高新技术领域年度重点创新进展报告”( 编号:ZLY201633) 研究成果之一。作者是科学技术部高技术研究发展中心的傅耀威老师和西北大学的孟宪佳老师。本文特约编辑:姜念云,本文首发于《科技中国》,边缘计算社区整理。全文 4565 字,浅显易懂,预计阅读 15 分钟。
边缘计算是通过把计算、存储、带宽、应用等资源放在网络的边缘侧,减小传输延迟和带宽限制的新兴技术。这项技术为物联网、云计算等技术提供了前所未有的连接性、集中化以及智能化,满足了敏捷连接、实时业务、数据优化、应用智能、安全与隐私保护等方面的需求,将是实现分布式自治、工业控制自动化的重要支撑。本文对边缘计算技术、标准、产业和应用国内外发展现状与趋势进行了梳理分析,提出了我国的进一步发展对策。
一、关于边缘计算技术
近年来,“物联网”“云计算”等技术得到广泛应用,但是随着万物互联以及 5G 高带宽、低时延时代的到来,各类业务如车联网、工业控制、4K/8K、虚拟现实 / 增强现实(VR/AR)等所产生的数据量爆炸式增长,对计算设施带来了实时性、网络依赖性和安全性等方面的要求,为了解决这些问题,国内外学者们提出了边缘计算的概念。
边缘计算的“边缘”指的是在数据源与云端数据中心之间的任何计算及网络资源。例如,智能手机就是个人与云端的“边缘”,智能家居中的网关就是家庭设备与云端的“边缘”。边缘计算的基本原理就是在靠近数据源的地方进行计算,是在靠近物或数据源头的网络边缘侧,融合网络、计算、存储、应用核心能力,就近提供边缘智能服务的开放平台。与云计算相比较,边缘计算就近布置,因而可以理解为云计算的下沉。
边缘计算实现了物联网技术前所未有的连接性、集中化和智能化,由此可以满足敏捷连接、实时业务、数据优化、应用智能、安全与隐私保护等方面的需求,是实现分布式自治、工业控制自动化的重要支撑。
边缘计算是计算系统从扁平到边缘,以及面向 5G 网络架构演进的必然技术,同时也提供了一种新的生态系统和价值链。第三方数据分析机构 IDC 预测,到 2020 年,全球将有约 500 亿的智能设备接入互联网,其中主要涉及智能手机、可穿戴设备、个人交通工具等,其中 40% 的数据需要边缘计算服务。边缘计算有着强大市场潜力,也引起了各研究机构、标准组织、服务提供商和产业界极大的关注。
二、世界发展现状与趋势
目前,边缘计算技术与应用仍处于发展初期阶段,亚马逊、谷歌和微软等云计算巨头是该领域的领跑者。
2017 年,亚马逊携 AWS Greengrass 进军边缘计算领域,走在了行业的前面。该服务将 AWS 扩展到设备上,这样就可以“在本地处理它们所生成的数据,同时仍然可以使用云来进行管理、分析数据和持久的存储”。
微软公司计划未来 4 年在物联网领域投入 50 亿美元,其中包括边缘计算项目。2017 微软发布了 Azure IoT Edge 解决方案,该方案“将云分析扩展到边缘设备”,支持离线使用。该公司还希望聚焦于人工智能应用。
谷歌 2017 年以来已宣布了两款相关的新产品,即硬件芯片 Edge TPU 和软件堆栈 Cloud IoT Edge,意在帮助改善边缘联网设备的开发。谷歌表示,“Cloud IoT Edge 将谷歌云强大的数据处理和机器学习功能扩展到数十亿台边缘设备,比如机器人手臂、风力涡轮机和石油钻塔,这样它们就能够对来自其传感器的数据进行实时操作,并在本地进行结果预测。”
国际上许多公司也在开发软件和技术帮助边缘计算实现腾飞。惠普公司计划在未来 4 年内向边缘计算领域投资 40 亿美元。该公司的 Edgeline Converged Edge Systems 系统的目标客户是那些希望获得数据中心级计算能力,且通常在边远地区运营的工业合作伙伴。其系统承诺在不依赖于将数据发送到云或数据中心的情况下,为工业运营(比如石油钻井平台、工厂或铜矿)提供来自联网设备的洞见。
人工智能芯片制造商英伟达于 2017 年推出了 Jetson TX2,这是一个面向边缘设备的人工智能计算平台。它的前身是 Jetson TX1,它号称要“重新定义将高级 AI 从云端扩展到边缘的可能性”。
有关边缘计算的标准化工作也逐渐受到各大标准化组织的关注,主要国际标准化组织纷纷成立相关工作组,开展边缘计算标准化工作。2014 年,欧洲电信标准化协会(ETSI)成立移动边缘计算标准化工作组;2015 年,思科、ARM、戴尔、英特尔、微软、普林斯顿大学等机构联合发起成立开放雾计算联盟;2017 年 ISO/IECJTC1SC41 成立了边缘计算研究小组,以推动边缘计算标准化工作。2017 年 IEC 发布了 VEI(Vertical Edge Intelli-gence)白皮书,介绍了边缘计算对于制造业等垂直行业的重要价值。2018 年初,ITU-TSG20(国际电信联盟物联网和智慧城市研究组)成功立项首个物联网领域边缘计算项目“用于边缘计算的 IOT 需求”。
三、我国发展现状与水平
2016 年 11 月 30 日,我国边缘计算产业联盟(ECC,Edge Computing Consortium)在北京成立。该联盟由华为技术有限公司、中国科学院沈阳自动化研究所、中国信息通信研究院、英特尔公司、ARM 和软通动力信息技术有限公司创始成立,首批成员单位共 62 家,涵盖科研院校、工业制造、能源电力等不同领域。2016 年和 2017 年分别出版了国内的《边缘计算参考架构》1.0 和 2.0 版本,梳理了边缘计算的测试床,提出了边缘计算在工业制造、电力能源、智慧城市、交通等行业应用的解决方案。
边缘计算是 5G 的核心能力之一,是实现 5G 性能提升的关键。2017 年,中国通信标准化协会(CCSA)发起了边缘计算研究项目。CCSA 无线通信技术委员会(TC5)和工业互联网特设任务组(ST8)都分别立项了有关边缘计算的项目。在 CCSA ST8 中,重点讨论面向工业互联网的边缘计算和边缘云标准化内容。目前,ST8 任务组已经立项标准包括:《工业互联网边缘计算总体架构与要求》,《工业互联网边缘计算技术研究》《工业互联网边缘计算边缘节点模型与要求》,《工业互联网边缘计算需求》。
在 CCSA TC5 中,三大运营商分别在边缘计算领域立项,涉及边缘计算平台架构、场景需求、关键技术研究和总体技术要求。中国联通发起并主导的“5G 边缘计算平台能力开放技术研究”项目,将结合边缘计算平台架构以及移动网络能力,进行 5G 边缘计算能力开放的场景分析和方案研究,进一步标准化网络信息开放框架与内容。中国移动和中国电信也分别牵头立项《边缘计算总体技术要求》和《边缘计算关键技术研究》,内容涵盖了 5G MEC 的关键技术,包括:本地分流、业务缓存和加速、本地内容计费、智能化感知与分析、网络能力开放、移动性管理和业务连续性保障。
三大运营商在边缘计算方面已经展开广泛探索。其中,中国联通 2018 年 2 月宣布正式启动全国范围内 15 个省市的 Edge-Cloud 规模试点和数千个边缘数据中心的规划建设工作;中国移动在江苏、浙江等地通过核心网下沉网关分流至 CDN 边缘节点,并探索了一些商用场景;中国电信在 2018 年搭建了基于边缘计算的 vCDN 概念验证解决方案环境,测试结果理想。
目前,运营商的边缘计算主要处于技术研究、实验室测试,以及相对简单场景的预商用阶段。英特尔和阿里云联合在重庆瑞方渝美压铸有限公司打造的工业边缘计算平台,采用了英特尔开发的深度学习算法和数据采集到协议转换的软件,以及阿里云开发的基于 Yocto 的操作系统(AliOS Things)、数据接入云端 Link Edge。该平台可以运行在工业边缘计算节点本地,并将结果聚合并存储在边缘服务器上,再通过阿里云的 LinkEdge 实现数据上云。该平台采用的机器视觉解决方案在 0.695 秒的时间内,几乎可以实时地识别制造缺陷,检测精度约为 100%。
总体来说,我国的边缘计算研究还处于起步阶段。
四、边缘计算面临的挑战
目前,关于边缘计算的研究才刚刚起步,虽然已经取得了一定成果,但从实际应用来说,还存在很多问题需要研究,下面对其中的几个主要问题进行分析。
第一,多主体的资源管理。边缘计算资源分散在数据的传输路径上,被不同的主体所管理和控制,比如用户控制终端设备、网络运营商控制通信基站、网络基础设施提供商控制路由器、应用服务供应商控制边缘服务器与内容传输网络。而云计算中的资源都是集中式的管理,因此云计算的资源管理方式并不适用管理边缘计算分散的资源。而目前关于边缘计算的研究也主要集中在对单一主体资源的管理和控制,还未涉及多主体资源的管理,实现灵活的多主体资源管理是一个十分富有挑战性的问题。
第二,应用的移动管理。边缘计算依靠资源在地理上广泛分布的特点来支持应用的移动性,一个边缘计算节点只服务周围的用户,应用的移动就会造成服务节点的切换,而云计算对应用移动性的支持则是“服务器位置固定,数据通过网络传输到服务器”。所以,在边缘计算中应用的移动管理也是一种新模式,涉及到资源发现和资源切换等问题。
第三,虚拟化技术。为了方便资源的有效管理,边缘计算需要虚拟化技术的支持,为系统选择合适的虚拟化技术是边缘计算的一个研究热点。目前,新型的虚拟化技术层出不穷,如何打破虚拟机和容器的规则与界线,将两者充分融合,同时具备两者的优势,设计适应边缘计算特点的虚拟化技术,也是一大挑战。
第四,数据分析。数据分析的数据量越大,往往提取出的价值信息就越多。但是收集数据需要时间,价值信息往往也具有时效性。边缘计算使数据可以在汇集的过程中被处理与分析,很多数据如果被过早地分析,可能会丢失很多有价值的信息,所以如何权衡提取信息的价值量与时效性是一个关键性问题。
第五,编程模型。边缘计算资源动态、异构与分散的特性使应用程序的开发十分困难。为减少应用的开发难度,需要可以适应边缘计算资源的编程模型。
五、我国进一步发展对策
据估算,2017—2026 年美国在边缘计算方面的支出将达到 870 亿美元,欧洲则为 1850 亿美元。因此,为应对新的发展机遇,对我国发展边缘计算技术,建议采取以下对策。
第一,加强边缘计算的技术标准和规范建设。边缘计算涉及到海量的终端设备、边缘节点,是数据采集、数据汇聚、数据集成、数据处理的前端,而这些设备往往存在异构性,来自于不同的生产厂商、不同的数据接口、不同的数据结构、不同的传输协议、不同的底层平台等。为此,统一的技术规范和标准亟待达成一致。这些标准和规范的制定,也将大大节约边缘云等的建设成本。
第二,注重将边缘计算技术发展与新一代信息技术结合。应将边缘计算技术的研发和应用与“互联网 +”、云计算、大数据和新一代通信技术等研发计划发展协同起来。边缘计算是与云计算相生相伴的一种技术,并且与大数据、5G 通信和智能信息处理技术等高度联接。因此,我国在制定相关研发计划的时候,要将对边缘计算技术和应用的发展纳入进去,加快相关核心技术的研发,促进边缘计算技术成熟度的提升。
第三,加强边缘计算的开源生态建设。边缘计算本身由海量的终端设备构成,而众多智能终端如采用统一的开源操作系统,便可形成边缘计算的开源生态环境。利用开源生态来维持核心代码,形成业界认可的技术接口、关键功能、发展路径等,将会给各厂商提供均等的发展机会。